

Laboratory Verification of a Chromogenic Factor IX Assay Kit

MAYO CLINIC

J. TANGE, M. SRIDHARAN, N. HEIKAL, D. CHEN, R. PRUTHI

Division of Hematopathology, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN

BACKGROUND

One-stage clotting FIX assays (OSA) are used for diagnosis of hemophilia B and monitoring clotting factor concentrates (CFC). Selected extended half-life CFC require chromogenic assay (CSA) for monitoring; none of which are US FDA approved. We present our in-house validation of a research use only CSA.

METHOD

REAGENTS/SUPPLIES

- ROX FIX kit Rossix AB, Sweden
- Factor IX Deficient Plasma Precision Biologic, Canada
- SynthASil Instrumentation Laboratory, United States
- ACL TOP 700 Instrumentation Laboratory, United States

TESTING PERFORMED – per CLSI guidelines

Accuracy (n=68)

- CFC's, ALPROLIX® and IDELVION®, spiked into FIX deficient plasma (n=32)
- Proficiency testing samples procured from ECAT (n=3)
- Waste de-identified patient plasma samples (n=33)

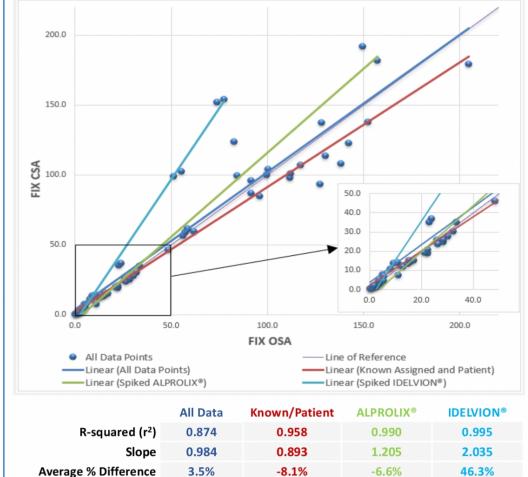
Precision (n=3)

- Intra; 20 replicates performed in one day
- Inter; 2 replicates performed twice daily for 10 days

Linearity (n=4)

- One commercial normal pool sample
- 3 de-identified individual patient samples with elevated FIX OSA
- Minimum of 10 different dilutions with diluent buffer
- Tested in triplicate

Reference Range (n=120)

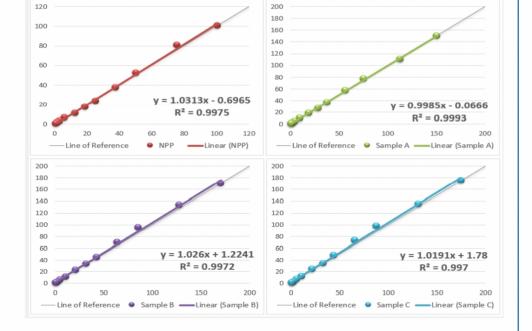

Verified current one-stage factor IX range

Analytical Sensitivity (n=3)

- Diluent Buffer
- Factor IX Deficient Plasma
- Control Material diluted to ~1%
- 20 replicates per day for 3 days
- · Tested on two different lots of ROX FIX kit

RESULTS

ACCURACY


PRECISION

Mean (%)	SD	CV
105.4	3.50	3.3%
37.5	1.05	2.8%
10.9	0.35	3.2%
Mean (%)	SD	CV
107.2	4.19	3.3%
37.6	1.76	4.7%
	105.4 37.5 10.9 Mean (%)	105.4 3.50 37.5 1.05 10.9 0.35 Mean (%) SD

REFERENCE RANGE

Mean (%)	SD	Min	Max	Count
104.7	18.1	62.7	153.7	120
Verified Range:		65 – 140%		

LINEARITY / REPORTABLE RANGE 1 – 200%

ANALYTICAL SENSITIVITY (LIMIT OF DETECTION)

Lot #1	Mean (%)	SD	CV
Factor Diluent	<1.0	0.00	0.0%
FIX Deficient Plasma	<1.0	0.00	0.0%
Diluted Control	1.1	0.05	4.3%

Lot #2	Mean (%)	SD	CV
Factor Diluent	<1.0	0.00	0.0%
FIX Deficient Plasma	<1.0	0.00	0.0%
Diluted Control	1.1	0.06	5.4%

CONCLUSIONS

Our CSA kit validation efforts met acceptance criteria for non-spiked patient samples. Data demonstrates the CSA assay can be optimized to provide reliable FIX activity estimates for baseline and ALPROLIX® with an acceptable CV and lower limit of detection of 1% activity. Additional studies are needed to further understand differences between the OSA and CSA when IDELVION® is present.

CONTACT INFORMATION

Tange.Julie@mayo.edu

(507) 284-3138

REFERENCES

CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline – Third Edition. CLSI document EP28-A3c. Wayne, PA: Clinical and Laboratory Standards Institute, 2008.

CLSI. Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline—Third Edition. CLSI document EP05-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

CLSI. *User Verification of Precision and Estimation of Bias; Approved Guideline—Third Edition*. CLSI document EP15-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

CLSI. *Measurement Procedure Comparison and Bias Estimation Using Patient Samples*. 3rd ed. CLSI guideline EP09c. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

CLSI. Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline. CLSI document EP06-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2003.